AMENDMENTS TO THE CLAIMS

List of Current Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims 1 - 7 (Cancelled)

8. (Currently Amended) A method for determining a measuring point in time (t_M) , at which a measured value is to be produced by a field device of process automation technology, comprising the steps of:

communicating measured values of the field device at certain communication points in time (t_K) via a field bus following a query from a central control unit for measured values of the field device;

approximately determining a following communication point in time (t_f) from at least one time span (A) between two preceding communication points in time (t_k, t_k') and a preceding communication point in time (t_k') , which is either one of said two preceding communication points in time (t_k, t_k') or which is another communication point in time (t_k') ; and

determining the measuring point in time (t_M) on the basis of said approximately determined following communication point in time (t_f) ; wherein:

the <u>measuring</u> point in time of <u>measurement</u> [[(t_m)]] (t_M) should, in such case, be as short as possible before the approximately determined following communication point in time (t_f) and, consequently, before a reporting of the measured value such that said determined measuring point in time [[(t_M)] (t_M) lies as short as possible before said approximately determined following communication point in time [[(t_F]] (t_f)

9. (Previously presented) The method as claimed in claim 8, wherein: the measurement point in time (t_M) is also communicated with the measured value.

10. (Cancelled)

11. (Previously presented) The method as claimed in claim 8, further comprising the step of:

calculating at least two time spans (A_1, A_2) between, in each case, at least two preceding communication points in time $(t_{K1}, t'_{K1}, t_{K2}, t'_{K2})$;

forming an average value (M) from the time spans (A_1, A_2) ; and approximately determining the following communication point in time (t_f) starting from the average value (M) and a preceding communication point in time (t''_K) .

Claims 12 - 13 (Cancelled).

14. (Currently Amended) A field device An apparatus for determining a measured point in time (t_M) , comprising:

a control unit;

at least one field bus communication unit, which, in the case of a query from said control unit, communicates at least one measured value; and

at least one output/control unit, which controls the measuring point in time (t_M) of said field device, wherein:

said at least one field bus communication unit transmits the communication point in time (t_{κ}) to said output/control unit;

said output/control unit approximately determines a following communication point in time (t_f) from at least one time span (A) between two

preceding communication points in time (t_{K_i}, t_{K_i}') and a preceding communication point in time (t_{K_i}') which is either one of said two preceding points in time (t_{K_i}, t_{K_i}') or which is another communication point in time (t_{K_i}, t_{K_i}') ; and

said output/control unit determines the measuring point in time [[(t_M)]] (\underline{t}_M) on the basis of said approximately determined following communication point in time (t_f) such that said determined measuring point in time (t_M) lies as short as possible before the approximately determined following communication point in time (t_f)